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Abstract. We introduce an alternative thermal diffusive dynamics for the spin-S Ising ferromagnet realized
by means of a random walker. The latter hops across the sites of the lattice and flips the relevant spins
according to a probability depending on both the local magnetic arrangement and the temperature. The
random walker, intended to model a diffusing excitation, interacts with the lattice so that it is biased
towards those sites where it can achieve an energy gain. In order to adapt our algorithm to systems made
up of arbitrary spins, some non trivial generalizations are implied. In particular, we will apply the new
dynamics to two-dimensional spin-1/2 and spin-1 systems analyzing their relaxation and critical behavior.
Some interesting differences with respect to canonical results are found; moreover, by comparing the
outcomes from the examined cases, we will point out their main features, possibly extending the results to
spin-S systems.

PACS. 5.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 02.70.Uu Applications of Monte Carlo
methods – 02.70.Tt Justifications or modifications of Monte Carlo methods – 05.10.Ln Monte Carlo
methods

1 Introduction

The Ising model has been extensively studied both by an-
alytical and computational methods; the latter are espe-
cially useful for complex and high dimensional lattices and
rely, for example, on Monte Carlo methods [1]. This im-
plies to find a prescription for updating the spin system
and an algorithm which determines if the suggested spin-
flip can be accepted.

The first procedure is the most subtle and it is usually
chosen so that it can be easily implemented (it typically
consists in a sweep along parallel lattice lines) while the
latter often refers to well-known algorithms such as the
Glauber one.

Here our aim is not to find an efficient algorithm, but
rather to realize a thermal dynamics physically consistent,
which possibly violates the detailed balance condition. In
particular, we refer to [2] where a diffusive dynamics was
introduced: the spin flips are induced by a random walker
hopping across the sites of the lattice. This model was in-
spired by some non-stechiometrical compounds [3] where
diffusing excitations (for example charged carriers) affect
the spin dynamics. Then, in our dynamics, the walker is
meant as a local excitation diffusing throughout the whole
sample and interacting with the magnetic arrangement.
Moreover, we suppose the walker to be biased towards
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those sites where a spin-flip is energetically more favor-
able. This technique is not only more natural than the
traditional ones, but it can also be applied to irregular
lattices represented by graphs.

The previous work succeeded in defining a new, well-
working dynamics, nevertheless the algorithm introduced
was expressly meant for a spin-1/2 system. Its extension
to the general spin-S case is non trivial since, while in the
spin-1/2 case each spin of the lattice allows only one pos-
sible new state, here the spin status is not binary and a
manifold choice occurs. Therefore, a further random pro-
cess has to be introduced: apart from the one concerning
the selection of the nearest-neighbor to move towards, we
also have to take into account the one relevant to the vari-
ety of states accessible to the spin considered. Then, in this
work, we developed a new algorithm able to be applied to
systems made up of discrete spins with an arbitrary num-
ber of states. Not only, we also wondered to what extent
results found in [2] depend on the special algorithm and
spin model taken into account. In order to do so we im-
plemented our dynamics on both spin-1/2 (as a test) and
spin-1 (as first example) systems.

The remaining of the paper is organized as follows.
In Sections 2 and 3 we explain the model and the new
algorithm, Sections 4 and 5 are devoted to the analysis of
the results: thermodynamics of the system and relaxation
at low temperature, respectively. Finally, in Section 6 we
discuss our outcomes.
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2 The model

The most general spin-1 Ising model with up-down sym-
metry is the BEG model [4], whose Hamiltonian reads:

H = −J
N∑

j∼i

σiσj − D
N∑

j∼i

σ2
i σ2

j − K
N∑

i

σ2
i , (1)

where the first two sums are over all nearest-neighbor pairs
on the lattice, the last is over all sites and σi = ±1,0.
This model was originally introduced to study phase sep-
aration and superfluidity in 3He-4He mixtures; then it has
been applied to describe properties of multicomponent flu-
ids, microemulsions, superconductor alloys and electronic
conduction models [5–7]. Here we consider the particular
situation with K = D = 0 and J �= 0 in order to preserve
the analogy with the spin-1/2 case and to concentrate on
the dynamical aspects.

The analysis of the diffusive dynamics is carried out
from the numerical point of view adopting a two dimen-
sional array of spins, so that, as mentioned above, results
obtained for the spin-1/2 are useful as a test by compar-
ison with those analytically known and relevant to the
canonical equilibrium state. Unfortunately, this is not pos-
sible for the spin-1 case as there exists no exact solution,
hence we will refer to earlier works mainly dealing with
Monte Carlo simulations, finite-size scaling, high- and low-
temperature expansions [8–13].

However, just a relatively small number of works about
critical exponents for the S ≥ 1 Ising model has been pub-
lished. Those works are mostly numerical and they con-
firm the exponents independence on the spin magnitude,
as consistent with the renormalization group theory [14].
Therefore, our work, though based on a non-traditional
dynamics, would offer an insight into this matter. In fact,
also encouraged by the interesting outcomes found in [2],
we meanly focused on the critical aspects.

3 Diffusive thermal dynamics

We refer to the algorithm introduced in [2] and we improve
it so that it can be easily adapted to systems made up of
spins with an arbitrary number of states q. In fact, as
already mentioned, that kind of algorithm is an exclusive
for systems made up of binary valued spins.

The relaxation dynamics is realized by a random
walker diffusing through the sites of the Ising lattice. In
general, the walker on a site i has (2d + 1)q possibilities:
it can move towards one of its 2d nearest neighbors j or
stop and it can flip the spin relevant to the reached site
or leave it unchanged.

More precisely, the walker moves from i to j realizing
the magnetic configuration s according to the normalized
probability:

PT (s, i, j) =
pT (s, j)

∑
{s′}

∑2d
j=0 pT (s′, j)

· (2)

In this equation {s′} is the whole of magnetic configura-
tions which can be realized from the current one and

pT (s, k) =
1

1 + e[β∆Ek(s)]
(3)

represents the probability of spin-flip relevant to the site
k, being

∆Ek(s) = (σk − σ′
k)

∑

j∼i

σi, (4)

the energy variation consequent to the process. Equa-
tion (3) has been derived from the usual Glauber prob-
ability [15]:

PG
T (s, k) =

e−βEn

∑q
m=1 e−βEm

(5)

which represents the probability that the selected spin k
has the value σk = n, being En the energy relevant to
that configuration. Note that the previous expression can
be rewritten as

PG
T (s, k) =

1

1 +
q∑

m=1
m �=n

eβ∆Em

(6)

with ∆Em = En − Em and it reduces to equation (3)
when q = 2. However, we adopt equation (3) in each case
because it is more direct and it also reveals to be more
efficient.

You can notice that the magnetic configuration of the
system, as well as the position of the walker, can remain
unchanged and that the diffusion of the walker is biased
towards those sites where it can achieve a gain in the en-
ergy.

There are some important consequences of the fact
that such a dynamics includes both the walker motion
on the lattice and the magnetic evolution of the lattice it-
self. In particular, the analytical approach is made rather
difficult and the detailed balance is explicitly violated. In
fact, the latter imposes the quite restrictive condition:

pνP (ν → µ) = pµP (µ → ν), (7)

according to which the overall rate at which transitions
from one state ν to another state µ happen is the same
for the reverse process. However, in our system, the prob-
ability of being in a state ν, as well as the probability
of making a transition ν → µ, are non trivial functions
of both the magnetic arrangement and the position of the
walker on the lattice, which involves that equation (7) does
not hold. In order to clarify this subtle point, a further in-
sight is provided. Suppose the transition µ → ν represents
the walker jumping from site i to j, realizing the spin-flip
σj → σ∗

j . The reverse transition is obviously impossible,
since it requires the walker to flip the spin relevant to
the starting site, σ∗

j → σj , while jumping from j to i. As
mentioned at the beginning of this section, this kind of
flip is forbidden by our dynamics so that P (ν → µ) = 0.
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Fig. 1. Finite size scaling for the specific energy of a spin-1/2 (left panel) and spin-1 (right panel) Ising system subject to the
diffusive dynamics described in Section 3 at T = 2.40 and T = 1.56 respectively. All the measurements were carried out in the
stationary regime and the error bars represent the fluctuations about the average values.
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Fig. 2. Finite size scaling for the specific magnetization of a spin-1/2 (left panel) and spin-1 (right panel) Ising system subject
to the diffusive dynamics described in Section 3 at T = 2.40 and T = 1.56 respectively. All the measurements were carried out
in the stationary regime and the error bars represent the fluctuations about the average values.

On the other hand, since the walker can reach any lattice
site, whatever the magnetic arrangement, both pµ and pν

are strictly positive quantities; as a result equation (7) is
false.

Note that the violation of the detailed balance is con-
sistent with our dynamics intent: it is not meant to recover
the canonical distribution, but rather to model some pos-
sible physical processes making the spin system evolve.

Analogous considerations can be drawn for other kinds
of diffusive dynamics employing random walkers.

On the other hand, a fundamental difference with the
algorithm suggested in [2] is that here, once the new site
selected, the corresponding probability is not determined
because we have also to specify the magnetic configuration
s candidate to be realized. Of course, in the spin-1/2 case
this is not necessary because, once the new site chosen,
there is just one new magnetic configuration which can be
considered.

Thus, our algorithm generalizes the previous one: now
it includes all kinds of new scenarios so that it can properly
work also for S > 1/2 cases.

Our analysis will be performed mainly by means of
numerical simulations keeping fixed the value of the ex-
change interaction constant (J = 1) and setting periodic
boundary conditions for the square lattice where spins are
placed on. In fact, it is clear that an equilibrium situation
can be reached only after the random walker realizing the

dynamics has visited every sites of the system a sufficient
number of times; this in particular selects the periodic
boundary conditions as the most natural for the problem.
Moreover, we deal with just one walker postponing the
case of a larger density to next works.

4 Thermodynamic of spin-1/2 and spin-1
systems

In this section we describe the results pertaining to spin-
1/2 showing their consistency with those in [2] and then
we will move to spin-1 delaying a global discussion to Sec-
tion 6.

In both cases the dynamics realized by the random
walker actually drives the system to a thermodynamically
well-behaved steady state, highly independent on the ini-
tial conditions. As we will see later, results relevant to the
critical exponents will provide another strong signature
that the stationary state reached by the system is actu-
ally an equilibrium state, though it is non trivially differ-
ent from the canonical equilibrium of the Ising model. In
fact, we verified that also for our diffusive dynamics the
normalized joint probability P̃(ε, m, T ), introduced in [2],
depends on T .

In Figures 1 and 2 the average values of the specific
energy and magnetization are plotted for systems with dif-
ferent sizes, at a fixed value of the temperature parameter.
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Fig. 3. Finite size scaling for the fluctuation about the average value of the specific energy for a spin-1/2 (left panel) and spin-1
(right panel) Ising system subject to the diffusive dynamics described in Section 3 at T = 2.40 and T = 1.56 respectively. The
slopes of the linear fit (line) of the measured data (•) −0.50 ± 0.01 and −0.51 ± 0.02 are in good agreement with the expected
value −0.5. All the measurements were carried out in the stationary regime.
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Fig. 4. Finite size scaling for the fluctuation about the average value of the specific magnetization for a spin-1/2 (left panel) and
spin-1 (right panel) Ising system subject to the diffusive dynamics described in Section 3 at T = 2.40 and T = 1.56 respectively.
The slopes of the linear fit (line) of the measured data (•) −0.49 ± 0.02 and −0.50 ± 0.02 are in good agreement with the
expected value −0.5. All the measurements were carried out in the stationary regime.
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Fig. 5. Specific magnetization for a 400×400 spin-1/2 (×) and
spin-1 (�) Ising system. The vertical dashed lines are placed
at the critical values of the temperature.

Figures 3 and 4 show the expected scaling behavior for
the fluctuations about the average value of the specific
thermodynamic observables which decrease as the inverse
square root of the lattice size. Now let us consider Fig-
ures 5 and 6: the average values of magnetization and en-
ergy are plotted versus temperature. For spin-1/2 a phase
transition is apparent at about T = 2.6 which is a value
significantly higher than the exact critical temperature
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Fig. 6. Specific energy for a 400 × 400 spin-1/2 (×) and
spin-1 (�) Ising system. The vertical dashed lines are placed
at the critical values of the temperature.

(we will deeply return on this feature later). For spin-1 we
see similar, but somehow left-shifted, curves which clearly
suggest T S=1

c < T
S=1/2
c . Analogous considerations can be

made from Figure 7 where relevant magnetic susceptibility
and specific heat are depicted: their profiles are consistent
with the theory and highlight that a phase transition hap-
pens at a well defined temperature.
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Fig. 7. Magnetic susceptibility (left panel) and specific heat (right panel) for a 400 × 400 Ising system of spin-1/2 and spin-1.
The two cases are easily distinguishable since the former displays a higher critical temperature.

Note that these results do not depend on the partic-
ular initial configuration which can, at least, affect the
orientation of the asymptotic arrangement. The evolution
of the system when the initial magnetization is very low is
quite interesting, especially in the spin-1 case, and it will
be treated in the next section. Now we focus our attention
on the critical behavior of the systems, i.e. the properties
featured nearby the phase transition. From general theo-
retical considerations, based on the renormalization group
theory, we expect that the critical exponents do not de-
pend on the spin magnitude, but they are characterized
by the dimensionality of the system and by its order pa-
rameter [14]. Nevertheless, it is not trivial that a diffusive
dynamics, generating a non canonical ensamble, does not
affect the universality class.

First of all, we observe that, like for the canonical
Ising model, the phase transition induced by the diffu-
sive dynamics exhibits a singular behavior for the ther-
modynamic functions. In this context it is important to
stress that specific heat and magnetic susceptibility were
calculated as fluctuations according to other studies of
Ising system where fluctuation-dissipation theorem does
not strictly apply.

In Figure 8 we plotted the data of magnetization fitted
by the power law

m(T ) ∼ |T − Tc|β . (8)

These data were used to estimate both the transi-
tion critical temperature and the relevant critical expo-
nent. The estimated values are respectively T

S=1/2
c =

2.602± 0.001 and β = 0.123± 0.005. The latter is in good
agreement with the relevant critical exponent of the two-
dimensional Ising model, while the former is significantly
higher than the exact one T Ising

c = 2J
log(1+

√
2)

≈ 2.269, but

there is a fairly good agreement with the value T
S=1/2
c =

2.612 ± 0.001 found in [2]. As shown in Figure 9 specific
heat behaves like the function

f(T ) = a + b log(|T − Tc|) (9)

which corresponds to a logarithmic divergence for the
observable at the critical temperature. In Figure 10 we
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Fig. 8. Log-log scale plot of magnetization versus |T −Tc| for
a spin-1/2 Ising system subject to the diffusive dynamics (•).
The measures were performed on a 1600× 1600 array of spins.
The dotted line is the best fit: y = A|T − Tc|β. The estimated
values for the critical temperature and for the exponent are
Tc = 2.602 ± 0.001 and β = 0.123 ± 0.005, respectively. The
latter is consistent with the relevant canonical one.
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Fig. 9. Specific heat for a spin-1/2 Ising system subject
to the diffusive dynamics (•). The dotted curves fitting the
data are of the form f(T ) = a + b log(|T − Tc|). The ver-
tical dashed line indicates the estimated value of the critical
temperature.
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Fig. 10. Log-log scale plot of magnetic susceptibility ver-
sus |T − Tc| for a spin-1/2 system subject to the diffusive
dynamics (•). The straight line fitting the data has a slope
γ = 1.761 ± 0.049 consistent with the canonical critical expo-
nent.
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Fig. 11. Log-log scale plot of magnetization versus |T − Tc|
for a spin-1 Ising system subject to the diffusive dynamics (•).
The measures were performed on a 1600× 1600 array of spins.
The best fit is represented by the dotted line y = A |T −
Tc|β . The estimated values for the critical temperature and for
the exponent are Tc = 1.955 ± 0.002 and β = 0.126 ± 0.005,
respectively; the latter is consistent with the relevant canonical
one.

represented a log-log scale plot of magnetic susceptibil-
ity which is suitably fitted by a straight line with slope
γ = 1.761 ± 0.049. This means that

χ(T ) ∼ |T − Tc|γ . (10)

Hence, for the three critical exponents measured, there
is a very good agreement with the canonical case: βIsing =
1/8, αIsing = 0 and γIsing = 7/4.

Now let us consider the spin-1 system: analogous re-
sults have been gathered. Figure 11 shows that magne-
tization data are consistent with the same power law of
equation (8) with critical exponent β = 0.126± 0.005 and
critical temperature Tc = 1.955±0.002 higher than values
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Fig. 12. Specific heat for a spin-1 Ising system subject to the
diffusive dynamics (•). The dotted curves fitting the data are
of the form f(T ) = a + b log(|T − Tc|). The vertical dashed
line indicates the estimated value of the critical temperature.
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Fig. 13. Log-log scale plot of magnetic susceptibility ver-
sus |T − Tc| for a spin-1 system subject to the diffusive dy-
namics (•). The straight line fitting the data has a slope
γ = 1.756 ± 0.064 consistent with the canonical critical ex-
ponent.

(T S=1
c ≈ 1.695) obtained in [8–12]. Also the specific heat

behaves according to equation (9) hence, again, a logarith-
mic divergence is obtained at about Tc (Fig. 12). Finally,
the magnetic susceptibility follows the same power law of
equation (10) with γ = 1.756 ± 0.064 (Fig. 13). Results
explained so far point out that, different models are simi-
larly affected by the diffusive dynamics. In particular, the
analyzed spin-1/2 and spin-1 Ising systems subject to our
dynamics share the same same universality class (which is
consistent to analytical results), despite their critical tem-
peratures are both 15% circa larger than their canonical
counterparts.

As observed in [2], such a quantitative difference can-
not be overcome by a simple rescaling of the temperature;
conversely, the exact critical temperature was restored by
increasing the density of walkers.
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5 Relaxation

In this section we deal with the properties featured by the
system when its initial configuration is paramagnetic and
the temperature is low (T � Tc). Of course, the time re-
quired by the walker to lead the system to equilibrium is
much larger than that needed when the system is initial-
ized ferromagnetic.

For both spin-1/2 and spin-1 systems, starting with a
low magnetization (whatever their arrangement), we no-
tice the formation of domains characterized by a different
orientation of their spins. Carrying on with the simula-
tion, one of the domains can prevail against the others and
a nearly ferromagnetic situation is established. However,
at very low temperatures, this evolution may be delayed
by the appearance of metastable states. These states cor-
respond to regularly shaped domains so that the lattice
appears striped. Such configurations also occur when a
non-diffusive dynamics is adopted, though less often. We
also compared the typical magnetic configurations per-
taining to our diffusive dynamics to the more traditional
Metropolis dynamics, exploiting the typewriter sequence
updating. Interestingly, in the former case, clusters dis-
play smoother boundaries, especially for the spin-1/2 sys-
tem (Figs. 14, 15). A deep study of the geometry of these
clusters will be the subject of a future paper [16].

Now it is worth deepening the particular role played by
the null spin in the case S = 1. The state σ = 0 provides
not only a further option for the spin variables, but it
also shows the property of being energetically neutral. As
a consequence, null spins are not expected to form wide
clusters, but rather to be found on the boundaries between
positive and negative clusters. In particular, they are likely
to stay on those sites such that

∑4
j=1 σi = 0.

Finally, we note that, in the spin-1 system, the exis-
tence of a third state makes transitions among spin states
more likely to happen. In fact, in general, when the num-
ber of states increases, there is also a rise in the number of
possible convenient events so that a spin-flip gets more and
more probable. This consideration also provides a reason
why the critical temperature for a spin-1 system must be
lower than its spin-1/2 counterpart. An analogous consid-
eration may also be applied to spin-S arrangements with
S > 1 [17].

6 Conclusions

The new algorithm we introduced realizes, by means of a
random walker, a diffusive dynamics to be applied to an
Ising ferromagnet. Such a model provides a proper alter-
native to the usual methods of updating the spin-system
and it can also be useful in order to investigate the inter-
action of diffusing excitations with spins.

A fundamental feature of our algorithm is that it can
be adapted to a number of other physical systems, as it
simply requires the system to be represented by an arbi-
trary arrangement of sites, each one related to a discrete
variable, and to be endowed with a proper set of local
dynamics rules. Due to the arbitrariness of the arrange-
ment, we can consider systems implemented on general

Fig. 14. Two snapshots showing typical magnetic configura-
tions for a 400 × 400 spin-1/2 Ising lattice with 〈m〉 = 0.82
subject to the diffusive dynamics at T = 2.46 (left panel) and
to the Glauber one at T = 2.15 (right panel). Note that the
left figure shows smoother boundaries and that the same mag-
netization is attained for different temperatures.

Fig. 15. (Color on line) Two snapshots showing typical mag-
netic configurations for a 400 × 400 spin-1 Ising lattice with
〈m〉 = 0.78 subject to the diffusive dynamics at T = 1.84
(left panel) and to the Glauber one at T = 1.60 (right panel).
Null spins are colored white. Notice that the difference between
these pictures is not so marked as that found in the previous
figure.

discrete networks, ranging from completely disordered to
fractal. Moreover, as a result of our extension (see Sect. 3),
the walker realizing the dynamics can deal with finite-
multistate local variables. Therefore, our algorithm can
also be applied to the q-state Potts model and, clearly,
to all the physical systems related to that model (such
as lattice gas, site and bond percolation, discrete vertex
model). Finally, as far the local dynamics rules, the equa-
tions described in Section 3, could be properly modified
according to the particular Hamiltonian pertaining to the
system taken into account. For example, for the Randomly
Coupled Ferromagnet [18], a different estimate of the en-
ergy variation consequent to a spin-flip would be reflected
by the probability of equation (2).

However, notice that, in general, the peculiar diffusive
character of the dynamics is preserved.

As far the thermodynamic of the spin systems consid-
ered in this work, we found that the diffusive character of
the dynamics leads to a critical temperature which is sig-
nificantly larger than the canonical one, notwithstanding
the universality class is preserved. This result constitutes
an interesting confirmation that, according to the renor-
malization group theory, the universality class is just con-
cerned with the geometry of the lattice and the symmetry
of the ordered state. In fact, as supported by our simula-
tions, the critical exponents we measured are the same for
spin-1/2 and spin-1 Ising systems (on a squared lattice),
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and, even more interestingly, they are also unaffected by
our non-canonical dynamics. Moreover, the rise in the crit-
ical temperature and the conservation of the universality
class are very effects of the diffusive dynamics as they seem
not to be due to a particular choice of the model.

The preservation of the universality class also suggests
that the stationary state reached by the system has to be
regarded as a non-canonical equilibrium state. In addition,
we recall that such a steady state is definitely independent
on the initial conditions. On the other hand, by increas-
ing the density of the walkers, we expect to recover the
canonical Boltzmann distribution (as shown in [2]).

Of course, it would be quite interesting also to study
what happens on spin-S (S > 1) systems or on higher
dimensional lattices.

However, what seems to be more interesting up to now
is a geometrical analysis of magnetic clusters and a char-
acterization of the biased random walker which will be the
subject of a forthcoming paper [16].
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